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Abstract— Drivers overloaded with information significantly 

increase the chance of vehicle collisions. Driver workload, a 
multi-dimensional variable, is measured by both 
performance-based and subjective measurements and affected by 
driver age differences. Few existing computational models are 
able to cover these major properties of driver workload or 
simulate subjective mental workload and human performance at 
the same time. We describe a new computational approach for 
modeling driver performance and workload—a queuing network 
approach based on the queuing network theory of human 
performance and neuroscience discoveries. This modeling 
approach not only successfully models the mental workload 
measured by the six NASA-TLX workload scales in terms of 
subnetwork utilization, but also simulates driving performance, 
reflecting mental workload from both subjective and 
performance-based measurements. In addition, it models age 
differences in workload and performance and allows us to 
visualize driver mental workload in real-time. Further usage and 
implementation of the model in designing intelligent and adaptive 
in-vehicle systems are discussed. 
 

Index Terms—Mental workload, computational modeling, 
queuing network, driver performance 
 

I. INTRODUCTION 
he expanding usage of in-vehicle systems increases the 
chance that drivers perform dual tasks in driving, e.g., 

driving and using a mobile phone concurrently. These dual 
tasks may impose high information load on drivers, increasing 
driver mental workload [1-3] which in turn may increase the 
chance of vehicle collisions by about 4 times compared to a 
single task condition [1],[4],[5]. Moreover, it is reported that 
older drivers’ crash rates were higher than young drivers [6] 
and using in-vehicle systems is one of the main causes of this 
increase in crash rates since older drivers’ information 
processing efficiency decreases with an increase in age [7]. In 
practice, modeling and predicting driver workload and 
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performance is very useful in designing in-vehicle systems to 
prevent drivers (especially older drivers) from being 
overloaded with information [8]. Significant costs of 
implementation and modification can be saved if driver mental 
workload can be predicted at an early stage of vehicle design. 

Several decades of research on mental workload has shown 
that mental workload has three important properties. First, it is 
a multidimensional variable (perceptual, cognitive, and motor 
dimensions) and operators are often capable of reporting the 
demands on separate workload dimensions [9-16]. Second, age 
differences are one of the most important factors in affecting 
driver workload [17]. Aging causes the slowing of older 
drivers’ information processing in perceptual, cognitive and 
psychomotor aspects [7],[18-20]. For the same amount of 
information being processed in the same time period, older 
drivers usually perceive higher levels of mental workload than 
young drivers [21],[22]. Third, performance-based 
measurements alone may not fully reflect mental workload 
because of the potential dissociation of performance and mental 
workload [23]. Thus, subjective or physiological measurements 
of mental workload should be applied in addition to 
performance-based measurements [24]. In this regard, 
subjective measurements are relatively easy to implement, 
nonintrusive and inexpensive, and have a high face validity 
[3],[24]. For example, NASA-TLX (National Aeronautic and 
Space Administration Task Load Index, [25]) is one of the most 
frequently used subjective mental workload scales which 
reflect the multidimensional property of mental workload [15]. 
It measures mental workload with six rating scales: mental 
demand, physical demand, temporal demand, performance, 
effort, and frustration levels. NASA-TLX has been 
successfully applied in a number of multi-task system 
environments [26].  

In accordance with the three properties of mental workload 
discussed above, a computational model of mental workload is 
expected to capture the multidimensional property of mental 
workload and to account for its age differences; it should also 
model mental workload from both performance-based and 
subjective measurements. Several computational models have 
been developed to model mental workload in driving (see Table 
1). Using control theory, Horiuchi and Yuhara (2000) modeled 
drivers’ mental and physical workload based on lead time 
constraints and steering wheel angle [27]. Lin et al. (2005) 
modeled driver performance using artificial neural network 
methods including counter propagation network, the radial 
basis function network and the back propagation network  [28]. 
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A statistical model was applied to model visual 
workload/demand in the driving context by Easa and Ganguly 
(2005) [29]: regression analysis was used to determine the best 
regression model of visual demand with independent variables 
(e.g., lane width). Assuming the driver as a semiotic system, 
Goodrich and Boer (1998) modeled mental workload by 
interactions of several mental model agents [30]. Piechulla et al. 
(2003) estimated driver mental workload by multiplying a 
weight factor with a basic estimated workload (w) based on the 
road information (e.g., intersection ahead) [8]. Based on the 
production-rule architecture—ACT-R [31], Salvucci et al. 
(2001) developed a model of driving behavior to simulate 
driver performance in a dual task situation [32]. However, as 
shown in Table 1, few models are able to simulate human 
performance and mental workload in dual tasks while reflecting 
the multidimensional property of mental workload. None of 
these models takes into account the effect of age differences on 

driver workload or visualizes mental workload, an important 
feature for enhanced usability and applicability [33],[34]. 

In this paper, to model the major properties of driver mental 
workload summarized in Table 1, we describe how to model 
driver mental workload and performance using a new 
computational modeling approach—the queuing network 
modeling approach [35],[36]. First, we describe the queuing 
network mental architecture representing information 
processing in the mental system and how the model was used to 
account for subjective mental workload including its age 
differences. Then, we describe how the model was validated 
with an experimental study on driver performance and 
workload.  
 

TABLE 1. 
COVERAGE OF DRIVER MENTAL WORKLOAD IN COMPUTATIONAL MODELS 

 
Computational Models 

Multi- 
dimensional 

 
Task 

Subjective 
Measurement

Performance-based 
Measurement 

Age  
Difference 

 
Visualization 

Queueing Network Model 
(Wu and Liu, this paper) 

Yes Dual Yes Yes Yes Yes 

Control Theory 
(Horiuchi et al., 2000) 

Mental 
and physical 

Single Yes Yes - - 

Neural Network 
(Lin, et al., 2005) 

Mental only Single - Yes - - 

Semiotics model 
(Goodrich et al., 1998) 

Mental only Single Yes - - - 

Statistic Model 
(Easa et al, 2005) 

Visual only Single Yes - - - 

Engineering Model 
(Piechulla, et al., 2003) 

Mental only Single Yes - - - 

Rule-based Model 
(Salvucci, et al., 2001) 

Visual/Cog-ni
tive/Motor 

Dual - Yes - - 

          -: not covered 

II. QUEUING NETWORK MODELING OF HUMAN 
PERFORMANCE 

In modeling human performance, computational models 
based on queuing networks have successfully integrated a large 
number of mathematical models in response time [35] and in 
multitask performance [36] as special cases of queuing 
networks. A simulation model of a queuing network mental 
architecture, called the Queuing Network-Model Human 
Processor (QN-MHP), has been developed to represent 
information processing in the mental system as a queuing 
network on the basis of neuroscience and psychological 
findings [37]. Ample research evidence has shown that major 
brain areas with certain information processing functions are 
connected with each other via neural pathways [38-41], which 
is highly similar to a queuing network of servers that can 
process entities traveling through the routes in the network 

serially and/or in parallel depending on specific network 
arrangements. Therefore, brain regions with similar functions 
can be regarded as servers and neural pathways connecting 
them are treated as routes in the queuing network (see Figures 1 
and 2). Further, it has been discovered that information 
processed in the brain are coded in spike trains [42]; depending 
on different tasks and learning stages, the to-be-processed 
information represented by these spike trains sometimes are 
processed by the brain regions (servers) immediately; 
sometimes they have to be maintained in certain regions to wait 
for the previous spike trains finishing their processing [39],[43]. 
Hence, these spike trains can be regarded as entities in the 
queuing network.  
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Perceptual Subnetwork  Cognitive Subnetwork  Motor Subnetwork 

1. Common visual processing (eyes, lateral 
geniculate nucleus, superior colliculus, primary 
and secondary visual cortex) 
2. Visual recognition (dorsal system) 
3. Visual location (ventral system) 
4. Visual recognition and location integration 
(distributed parallel area including the 
connections among V3 , V4 and V5, superior 
frontal sulcus, and inferior frontal gyrus) 
5. Common auditory processing (middle and 
inner ear) 
6. Auditory recognition (area from dorsal and 
ventral cochlear nuclei to the inferior colliculus) 
7. Auditory location (area from ventral cochlear 
nucleus to the superior olivary complex) 
8. Auditory recognition and location integration 
(primary auditory cortex and planum temporale) 

 A. Visuospatial sketchpad (right-hemisphere posterior parietal 
cortex) 
B. Phonological loop (left-hemisphere posterior parietal cortex) 
C. Central executive (dorsolateral prefrontal cortex (DLPFC), 
anterior-dorsal prefrontal cortex (ADPFC) and middle frontal 
gyrus (GFm)) 
D. Long-term procedural memory (striatal and cerebellar systems) 
E. Performance monitor (anterior cingulate cortex) 
F. Complex cognitive function: decision, calculation, anticipation 
of stimulus in simple reaction etc. (intraparietal sulcus (IPS), the 
superior frontal gyrus (SFS), the inferior frontal gyrus (GFi), the 
inferior parietal cortex and the ventrolateral frontal cortex, the 
intraparietal sulcus and the superior parietal gyrus) 
G. Goal initiation (orbitofrontal region and amygdala complex) 
H. Long-term declarative & spatial memory (hippocampus and 
diencephalons) 

 V. Sensorimotor integration 
(premotor cortex)  
W. Motor program retrieval 
(basal ganglia) 
X. Feedback information 
collection (somosensoy 
cortex) 
Y. Motor program 
assembling and error 
detecting (supplementary 
motor area ( SMA) and the 
pre-SMA) 
Z. Sending information to 
body parts (primary motor 
cortex) 
21-25: Body parts: eye, 
mouth, left hand, right hand, 
foot 

Fig. 1. The general structure of the Queuing Network -Model Human Processor (QN-MHP) 
Further developed from Liu, Feyen, and Tsimhoni (2006) [11] 

 

 
Fig. 2. Mapping servers of the queuing network model on corresponding brain 

areas 
 

The QN-MHP consists of three subnetworks: perceptual, 
cognitive, and motor subnetworks as described in the following 
sections.  

A. Perceptual Subnetwork.  
The perceptual subnetwork includes a visual and an auditory 

perceptual subnetwork, each of which is composed of four 
servers. In the visual perceptual subnetwork, light waves 

(represented by numerical codes) are transmitted to neuron 
signal (represented by information entities) at the eye, the 
lateral geniculate nucleus, the superior colliculus, the primary 
visual cortex (V1), and the secondary visual cortex (V2, 
represented by Server 1) [38]. Then, these entities are 
transmitted in parallel visual pathways—the parvocellular 
stream (represented by Server 2) and the magnocellular stream 
(Server 3) where the object content features (e.g., color, shape, 
labeling etc.) and location features (e.g., spatial coordinates, 
speed etc.) are processed [38],[39],[44],[45]. The distributed 
parallel area (represented by Server 4)—including the neuron 
connections between V3 (part of the dorsal stream) and V4 (a 
cortical area in the ventral stream) as well as V4 and V5 (an 
area in the extrastriate visual cortex), the superior frontal sulcus, 
and the inferior frontal gyrus—integrates the information of 
these features from the two visual pathways and generates 
integrated perception of the objects [38],[44]. 

The auditory perceptual subnetwork also contains four 
servers: the middle and the inner ear (represented by Server 5) 
transmits sound to parallel auditory pathways, including the 
neuron pathway from the ventral cochlear nucleus to the 
superior olivary complex (represented by Server 7) and the 



IEEE Transactions on Intelligent Transportation Systems (In Press) 4

neuron pathway from the dorsal and ventral cochlear nuclei to 
the inferior colliculus (Server 6) where location, pattern and 
other aspects of the sound are processed [38]. The auditory 
information in the auditory pathways is integrated at the 
primary auditory cortex and the planum temporale (represented 
by Server 8) [46].  

B. Cognitive Subnetwork.  
The cognitive subnetwork includes a working memory 

system, a goal execution system, a long-term memory system 
and a complex cognitive processing system.  

Following Baddeley’s working memory model, there are 
four components in the working memory system: a visuospatial 
sketchpad (Server A), representing the right-hemisphere 
posterior parietal cortex; a phonological loop (Server B), 
standing for the left-hemisphere posterior parietal cortex; a 
central executor (Server C), representing the dorsolateral 
prefrontal cortex (DLPFC), the anterior-dorsal prefrontal 
cortex (ADPFC), and the middle frontal gyrus (GFm); and a 
performance monitor (Server E), standing for the anterior 
cingulate cortex (ACC). The visuospatial sketchpad and the 
phonological loop store and maintain visuospatial and 
phonological information in working memory [39].  

The goal execution system (Server G) represents the 
orbitofrontal region, brain stem including the locus 
coeruleus-norepinephrine (LC-NE) system, and the amygdala 
complex which are typically involved in goal initiation and 
motivation [47].  

The long-term memory system represents two types of 
long-term memory in the human brain: 1) declarative (facts and 
events) and spatial memory (Server H), standing for the medial 
temporal lobe including the hippocampus and the 
diencephalons which store various kinds of production rules in 
choice reaction, long-term spatial information, perceptual 
judgment, decision making, and problem solving; 2) 
nondeclarative memory (procedural memory and motor 
program) (Server D),  representing the striatal and the 
cerebellar systems which store all of the steps in task procedure 
and the motor programs related to motor execution [38].  

The complex cognitive processing system (Server F) stands 
for brain areas performing complex cognitive 
functions—multiple-choice decision, phonological judgment, 
spatial working memory operations, visuomotor choices, and 
mental calculation. These brain areas include the intraparietal 
sulcus (IPS), the superior frontal gyrus (SFS), the inferior 
frontal gyrus (GFi), the inferior parietal cortex and the 
ventrolateral frontal cortex, the intraparietal sulcus and the 
superior parietal gyrus [39],[48],[49]. 

C. Motor Subnetwork.  
The motor subnetwork includes 5 servers corresponding to 

the major brain areas in retrieval, assembling, and execution of 
motor commands as well as sensory information feedback. First, 
Server V represents the premotor cortex in Brodmann Area 6 
which plays an important role in sensorimotor and sensory cue 
detection [40],[50],[51]. Second, the basal ganglia (Server W) 

retrieves motor programs and long term procedural information 
from long term procedural memory (Server D) [38],[52],[53]. 
Third, the supplementary motor area and the pre-SMA (Server 
Y) have the major function of assembling motor programs and 
ensuring movement accuracy [54]. Fourth, the function of the 
primary motor cortex (Server Z) is to address the spinal and 
bulbar motor neurons and transmit the neural signals to 
different body parts as motor actuators (mouth, left and right 
hand, left and right foot server etc., [40]). Fifth, the S1 (the 
somosensory cortex, Server X) collects motor information of 
efference copies from the primary motor cortex (Server Z) and 
sensory information from body parts and then relay them to the 
prefrontal cortex (Server C) as well as the SMA (Server Y) 
[40].  

 
QN-MHP has been successfully used to generate human 

behavior in real time, including simple and choice reaction time 
[44], transcription typing [55], psychological refractory period 
[56], visual search [57], and driver performance [58]. 

A study most relevant to the current one is the computational 
modeling of human performance in dual task under the driving 
context [58]. Liu et al. (2006) have successfully modeled dual 
task performance (steering and reading a map concurrently) in 
driving with QN-MHP. Multitask performance emerges as the 
behavior of multiple streams of information flowing through a 
network without the need to interleave production rules or 
interactively control task processes. The study reported in this 
current paper focuses on how to extend the model of driver 
performance significantly to cover mental workload in driving, 
as well as to account for age differences in performance and 
workload. 

III. MODELING MENTAL WORKLOAD IN DRIVING 
Since subjective mental workload reflects the perception of 

information processing throughout each trial in a task, the 
average utilization of a subnetwork ( iρ )—the average 
utilization of subnetwork i in total task time of each trial (T)—is 
regarded as a natural index of subjective mental workload in 
QN-MHP (see Equation 1). In computational modeling of 
mental workload, Rouse (1980) modeled mental workload in a 
single task situation using server utilization as an index of the 
workload [59]; Just et al. (2003) also regard the capacity 
utilization as a typical representation of mental workload [60]. 
In terms of the physiological mechanism of mental workload, it 
is also reasonable to use utilization as the index of mental 
workload: increasing utilization of certain brain regions causes 
the consumption of more neurotransmitters (e.g., amino acids, 
norepinephrine/NE, 5-hydroxytryptamine/5-HT) in synaptic 
transmissions, which in turn increase the perception of mental 
fatigue [61-65].  

0

( ) /
T

i idt Tρ ρ= ∫                   ( 0 1iρ≤ ≤ ) (1)

where iρ  can represent the average utilization of visual 
perceptual subnetwork ( vpρ ), auditory perceptual subnetwork 
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( apρ ), cognitive subnetwork ( cρ ), and motor subnetwork 
( mρ ), respectively. Moreover, based on the definition of each 
scale in NASA-TLX [25], the score of physical demand (PD) 
reflects workload at the motor component, and therefore it is in 
direct proportion to the average utilization of motor 
subnetwork ( mρ ) (see Equation 2); the scores of temporal 
demand (TD), frustration (FR), performance (PE) and effort 
(EF) represent the overall workload in the system, which is 
reflected by the average utilization of all the subnetworks (see 
Equations 3-6); the score of mental demand (MD) is judged 
based on the perceptual and cognitive demands (how much 
perceptual and mental activities were required, [25]), and 
therefore it is in direct proportion to the average utilization of 
perceptual and cognitive subnetworks (see Equation 7).  

                            (0 100)mPD a b PDρ= + ≤ ≤  (2)

 
( ) / 4                      (0 100)i

All i
TD a b TDρ= + ≤ ≤∑  

(3)

 
( ) / 4                 (0 100)i

All i
EF a b EFρ= + ≤ ≤∑  (4)

 
( ) / 4                 (0 100)i

All i
PE a b PEρ= + ≤ ≤∑  (5)

 
( ) / 4                 (0 100)i

All i
FR a b FRρ= + ≤ ≤∑  (6)

, ,

( ) / 3                 (0 100)i

i ap vp c

MD a b MDρ
=

= + ≤ ≤∑  
(7)

where parameters a and b are constants in representing the 
direct proportional relation between the averaged utilizations 
and subjective responses (a>0). Equations 2-7 are 
implemented in the simulation model to generate subjective 
workload responses (See [58] for descriptions of how 
QN-MHP is able to simulate driver performance). 

In addition, research evidence suggests that the major 
difference in information processing between the older and 
young adults is a generalized slowing in information 
processing speed for older adults [7],[26],[66]; therefore, 
considering age differences, the information processing speed 
at server j (μj) in the network is: 

0,
1( )j j
A

μ μ=  (8)

where A is a factor of aging (A ≥ 1): the value of A is directly 
proportional to the driver’s age; μ0,j is the original processing 
speed of server j for young adults in QN-MHP [58]. Moreover, 
according to the traffic intensity function in queuing network 
theory [67], utilization of a certain subnetwork i (ρi) (the 
fraction of time the subnetwork i is processing entities in a 
defined time period) is in inverse proportion to the average 
processing speed of all the servers in the subnetwork ( iμ ) (see 
Equation 9).  

1 1

        (0 1)
[( ) / ]

Ci Ci

j j

i i i
i i

i i i j i jC C C
λ λ λρ ρ
μ μ μ

= =

≡ = = ≤ ≤
∑ ∑

          
(9)

where λi is the arrival rate of the subnetwork i and Ci is the total 
number of servers in the subnetwork i. 

Mathematically, we can derive that the expected subjective 

mental workload of older drivers is equal to or greater than 
young drivers from the equations above. Combining Equations 
1-9 above, we have:  

1

1
1
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μ
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(10)

Similarly, we can derive: 
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∑

∫  
(11)

, ,

1

, ,

0,0

( ) / 3Ci vp ap c

j

T
i vp ap c

j

MD Aa dt T bλ
μ

=

=

=
= +

∑
∫  (12)

If the arrival rate ( mλ , all iλ , , ,i vp ap cλ = ) and the 
total task time of each trial (T) remain the same in 
different age groups,  

1A ≥Q  
,  ,  ,  

,  ,  and 
old young old young old young

old young old young old young

PD PD TD TD EF EF
PE PE FR FR MD MD
∴ ≥ ≥ ≥

≥ ≥ ≥
 

(13)

Similarly, age differences in driving performance can also be 
quantified. In queuing network theory, the performance of a 
network (HP) is in direct proportion to its servers’ processing 
speeds (see Equation 14, [67]). 

 
(1/ ) ( )j

all j
HP A μ= Ω   (14)

where Ω  is a function describing a negative relationship 
between human performance and all of the servers’ processing 
times as variables. Since A ≥ 1, the expected performance of 
older drivers is equal to or lower than young drivers. 

IV. AN EXPERIMENT ON DRIVER WORKLOAD AND 
PERFORMANCE 

Feyen and Liu (1998) conducted an experimental study in 
which drivers of two age groups performed a dual task of 
vehicle steering and button-pressing in a simulator (see Figure 
3) [22]. In the primary vehicle steering task, subjects were 
asked to keep the vehicle in control by maintaining the lane 
position and the same driving speed (45 miles/hour). In the 
secondary button-pressing task, subjects were instructed to 
press one of the buttons on a panel mounted on the right side of 
the steering wheel when they saw a command presented on the 
display.  
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Fig. 3. Subject responded to a command prompt during driving [22] 

 
The independent variables were: 1) the age group of the 

subjects (four young drivers, 17-30 years old; four older drivers, 
61-75 years old); 2) the number of buttons on the panel with 3 
difficulty levels (2, 4, or 6 buttons). The dependent variables 
included: 1) the lane position deviation difference from the 
baseline (LPDDB) and it was calculated by subtracting a 
baseline lane position standard deviation from the lane position 
standard deviation during the task time segment (a negative 
value indicated a more stable lane positioning while a positive 
value indicated a less stable lane positioning); 2) reaction time 
of the button-pressing task as a performance-based mental 
workload measurement: the time interval between the 
command presentation and pressing of a button; 3) subjective 
ratings on the 6 scales of NASA-TLX after each trial.  Since 
overall mental workload calculated by weighting the scales 
does not appear to add to the sensitivity of the NASA-TLX 
[24],[68], the overall mental workload was not collected in this 
experimental study [22]. 

V. SIMULATION RESULTS AND VALIDATION 
By implementing Equations 2-7 described in the previous 

section in the queuing network simulation model, the 
simulation results are obtained and then compared with the 
experimental results (see Appendix for the method of setting 
parameters in these equations). 

A.  Driver Workload 
Figure 4 shows the comparison between the simulation 

results and experimental results for each of the scales of 
NASA-TLX. Table 2 summarizes the R square and RMS of the 
model for each scale.  

  
Fig. 4. Subjective mental workload in the experimental study of Feyen & Liu 
(1998) (solid lines) in comparison with the simulation results (dashed lines). 
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TABLE  2. 
R SQUARE AND RMS OF THE MODEL FOR EACH SCALE 

Scales  Young Drivers  Older Drivers 
  R2 RMS  R2 RMS 

Physical Demand  .99 1.83  .95 1.74 
Temporal Demand  .99 1.26  .97 3.92 
Effort  .99 2.43  .97 4.01 
Performance  .97 2.37  .93 3.79 
Frustration  .99 1.78  .95 1.69 
Mental Demand  .99 1.52  .99 6.56 
Average  .99 2.11  .96 3.62 

 

B. Driver Performance 
Figures 5 and 6 show the simulation results of driver 

performance in comparison with the experimental results 
(LPDDB: R square=.98, RMS=.03; RT to the secondary task: R 
square=.94, RMS=50.4). 

 
Fig. 5. LPDDB in the experimental study (solid lines) in comparison with 
simulation results (dashed lines)  
 

 
Fig. 6. Reaction time to the secondary task in the experimental study (solid lines) 
in comparison with simulation results (dashed lines) 
 

C. Workload Visualization 
As shown in Figure 7, the model allows a modeler to 

visualize the overall and the subnetwork mental workload by 
observing the entity activities and the network flow patterns 
during the simulation. Dynamic values of subnetwork 
utilizations are also shown in the simulation so that the user of 
the model can observe the dynamic changes of mental 

workload in real-time.  

 
(a) High mental workload condition 

 

 
(b) Low mental workload condition 

Fig. 7. Visualizing mental workload in QN-MHP during the simulation 
A short movie clip can be seen on the website: 
http://www.acsu.buffalo.edu/~changxu/ 

VI. CONCLUSIONS 
We described a queuing network modeling approach to 

model subjective mental workload and multitask performance 
including their age differences in a driving context, reflecting 
the multidimensional nature of mental workload from both 
subjective and performance-based measurements. Few existing 
computational models are able to simulate all of these major 
properties of driver workload at the same time in dual task 
situations. This modeling work offers a natural quantification 
of subjective mental workload with subnetwork utilization and 
initiates a step in connecting the output of an engineering model 
with the measurement of the subjective mental workload.  

In practice, this modeling approach has several significant 
values for user interface design of in-vehicle systems. First, the 
queuing network simulation model is able to predict and 
visualize where workload is concentrated in the perceptual 
(auditory or visual), cognitive or motor subnetworks. For 
example, if the visual perceptual workload predicted by the 
model is heavy in certain circumstances, interface designers 
can design the user interface to present auditory information 
and use the model to test whether driver’s visual perceptual 
workload can be reduced and whether the design creates other 
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workload and performance problems. 
Second, an accurate estimation of mental workload is vital 

for the design of intelligent or adaptive driver support and 
warning systems. Typically, these systems rely on 
computational models to estimate driver workload and propose 
actions to prevent traffic accidents (e.g., redirecting messages 
into a voice mailbox, [8], [70], [71]). By implementing this 
computational model into these systems, driver mental 
workload in different information processing components can 
be estimated more accurately. 

Third, the capability of mental workload visualization is 
unique feature of the current modeling approach. Information 
visualization is an important step to increase the usability and 
face validity of a model [34] and allows users of the model to 
view the input, processing activities, and output of the model 
intuitively. Moreover, the dynamic change of mental workload 
in perceptual (auditory or visual), cognitive and motor 
subnetworks can be viewed and estimated directly in real time. 
This may help users of the model predict when the mental 
workload reaches “red-line” (reflected by a certain level of the 
average subnetwork utilization) as well as by how much and for 
how long it exceeds that red-line (see Figure 7).  

In addition, the current modeling work accounts for age 
differences by simply considering an aging factor in servers’ 
processing times, and it is consistent with findings in empirical 
studies on age differences. For example, Salthouse (1982, 1985) 
suggested that age differences are simply a function of a 
generalized slowing of information processing in older adults 
[18],[19]. Moreover, the current modeling work simplifies the 
estimation of 4 scales of NASA-TLX (TD, EF, PE and FR) by 
using the same index in the network (averaged utilization of all 
the subnetworks). This simplification is supported by empirical 
studies developing and using NASA-TLX in dual tasks. Hart 
and Staveland (1988) found that there is a high correlation 
among TD, EF, PE and FR (correlation efficient >.65) when 
NASA-TLX is used to measure the subjective mental workload 
in a dual task [25].  

Even though the current modeling approach demonstrates its 
effectiveness and simplicity in accounting for the six mental 
workload scales in NASA-TLX in the driving context, several 
important topics need to be investigated in future research. The 
model in the future may need to differentiate the workload 
scores in the four scales (PE, EF, FR, TD) since they may stem 
from different psychological mechanisms. For example, 
frustration (FR) may be not only related to the utilization of 
resources or capacities in the system, but also affected by a 
person’s subjective sensitivity to temporal pressure. Compared 
with mental workload measured by the other scales related to 
the utilization of resources or capacities, the mental workload 
measured by the performance (PE) scale may result from a 
complex subjective self-evaluation of one’s performance 
including his or her prior experience in performing the same or 
relevant tasks, self-confidence, and self-evaluation strategies. 
This is also relevant to the modeling of individual differences, 
which is a very important topic to be covered in our future 
research and development of the queuing network model. In 

addition, even though the overall mental workload calculated 
by weighting the scales does not appear to add to the sensitivity 
of the NASA-TLX [24],[68], its value is another important 
topic to be investigated in the future because evaluation of 
some systems only need one index to represent mental 
workload.  

We are extending the current modeling approach to other 
related mental workload research including modeling 
physiological measurements of mental workload. Overall, our 
current work demonstrates the value of the queuing network 
modeling approach in modeling and quantifying driver 
subjective mental workload and performance. 

 

APPENDIX 
In simulating subjective mental workload, the values of 

parameters  a and b in Equations 2-7 are estimated based on the 
parameter setting method in a classic cognitive modeling work 
[69]—a and b are estimated only for the physical demand scale 
(change the value of these two parameters to generate the 
maximum fitness between the modeling results and 
experimental results), and then the same value is used to 
estimate subjective responses on the other 5 scales. Therefore, 
no free parameter is used in estimating the subjective responses 
in all the other 5 scales for young and older drivers (free 
parameter refers to parameters whose value is adjusted by 
researchers so that the modeling results fit the experimental 
results). Moreover, based on the method in calculating R square, 
the high R square values indicate that without using parameter 
a and b in Equations 2-7, the average subnetwork utilizations in 
Equations 2-7 are able to predict the variance of subjective 
mental workload accurately. In addition, no free parameter is 
used in predicting human performance.  

The aging factor, A, is set according to a review of Proctor et 
al. (2005): Proctor et al. reviewed seven experimental studies 
and found that the mean reaction time for younger adults (24 
years old on average) in spatial-visual choice RT task is 417 ms 
(compatible condition: 369 ms; incompatible condition: 465 
ms); mean RT for older adults (70 years old on average) is  527 
ms (compatible condition: 457 ms; incompatible condition: 597 
ms) (see Table 1 in [70]). Therefore, A=1.26 (527/417=1.26) is 
selected for older drivers; and A=1 for young drivers [70].  
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